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A note on the proofs of
generalized Radon inequality

YONGTAO L1, XIAN-MING GU*, JIANCI XIAO

ABSTRACT. In this paper, we introduce and prove several generaliza-
tions of the Radon inequality. The proofs in the current paper unify
and also are simpler than those in early published work. Meanwhile,
we find and show the mathematical equivalences among the Bernoulli
inequality, the weighted AM-GM inequality, the Holder inequality, the
weighted power mean inequality and the Minkowski inequality. Finally,
some applications involving the results proposed in this work are shown.

1. INTRODUCTION

The well-known Bergstrom inequality (see e.g. [1-3]) says that if zx, yx
are real numbers and y; > 0 for 1 < k < n, then

2
(1) ﬁ+é+...+ﬁz(wl+x2+“-+xn)
yl y2 yn y1+y2++yn

and the equality holds if and only if ?% = 3% =...= :%

Some generalizations of the inequality (1) can be found in [4,5]. Ac-
tually, the following Radon inequality (2) is just a direct consequence: If
b1,bo,...,b, are positive real numbers and a1, ao, ..., a,, m are nonnegative

real numbers, then

(2) agn—i-l +agn+1 +”,+a’nm+l - (a1+a2+"'+an)m+1
m m b = (b bt by)"

When m = 1, (2) reduces to (1). For more details on the Radon inequality
(2), the readers can refer to |6, pp. 1351] and [7,8,10]. In fact, it is not hard
to prove that (1) is equivalent to the Cauchy-Buniakovski-Schwarz inequality
(see |9, pp. 34-35, Theorem 1.6.1]) stated as follows: if a1,...,an,b1,...,by
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are nonnegative real numbers, then

n n n 2
> a3 n (3 van)
k=1 k=1 k=1
In [14, Theorem 1|, Yang has given a generalization of the Radon inequal-
ity as follows: if a1, as, ..., a, are nonnegative real numbers and by, b, ..., b,
are positive real numbers, then for r > 0,s > 0 and r > s + 1,
ab ah ar, (a1 +az+---+ay)
3 ot > .
®) b§ b by — s (by + by + -+ bp)°

The weighted power mean inequality (refer to [12, pp. 111-112, Theorem
10.5], [7, pp. 12-15] and [13] for details) is defined as follows: if x1, z2,..., 2y,
are nonnegative real numbers and pi,p2,...,p, are positive real numbers,
then for r > s > 0, we have

1 1
(1) <p1w§+4n$£%--“-+pnw2>7‘> <p1$T+me§%-‘~-+pn$%)s'
pPr+tp2+t-+pn pPrt+p2+t-+pn

In the present paper, we give three concise proofs and some applications
of the generalized Radon inequality (3), and then present equivalence rela-
tions between the weighted power mean inequality and the Radon inequality.
Furthermore, we summarize the equivalences among the weighted AM-GM
inequality, the Holder inequality, the weighted power mean inequality and
the Minkovski inequality.

2. MAIN RESULTS

In this section, we first give three different and concise methods for proving
the generalized Radon inequality (3). To read for convenience, the result
obtained by Yang [14] can be cited as the following theorem.

Theorem 2.1. Ifay,ao,...,a, are nonnegative real numbers and by, ba, . . . by
are positive real numbers, then for s >0 andr > s+ 1,

r T r . r
(5) %+%+"'+%Z rf(sci11+a2+ + ap) Ny

Proof 1. By using the Radon inequality (2), we have
r s+1 T T T s+1
(o) (o e el
6 Tk
o pa-pU RS

Note that r > s+ 1 > 1, then SJFLI — 1 > 0. Using the Radon inequality
again, it follows that

T
n

oo s+1 ﬁ
(7) St oy Gy (et a) T
k=1 =1 17T (14 1)
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According to inequalities (6) and (7), we clearly have

ay  ah a, a1+ as+ - +a,)"
R R e
b5 b bs —n (b1 +ba+ -+ by)
Therefore, the desired result (5) is obtained. O

Proof 2. Let the concave function f: (0,+00) — R be f(z) = lnxz. We
observe that the weighted Jensen inequality: for ¢i,¢2,q3 € [0,1] with ¢ +
q2 + g3 = 1 and positive real numbers x1, 2, x3, then we have

qf(z1) + g2f (z2) + g3 f(x3) < fl@r21 + @272 + g323),
and the equality holds if and only if z; = xo = 3. We denote

a’ ar r\ —1
an
nte) = (G + 52+ 52)
n

Hp(b) = (b1 +ba+ -+ +by)7"
Consider @1 = §kUn(a),22 = bpHa(b),2s = } and g1 = .g2 = 3,43 =

and

n

% (observe that g3 > 0 from r > s+ 1). Thus we have

r—s—1
1 El 1 "
U@ - ()7 - (1)
1 aj s r—s—1 1
<-.-ty, b Hp(b) 4+ ——— - —.
b (a) + ror (b) + r n
Summing up over k (k=1,2,...,n), we obtain
r—s—1
1 s 1 T
)r - (Hp(b))r - | —
Zak (Ha0) (n)
1 a s r—s—1 1
< LUn(a) + = - bpHy(b) + ———— - = ) = 1.
ZQ # L 0) )
The required inequality (5) follows. O

For many numerical inequalities, the induction is sometimes a useful
method used to establish a given statement for all natural numbers. We
now give the third proof of Theorem 2.1 by mathematical induction. To
state this proof clearly, let us start with the following lemma.

Lemma 2.1. If ay,a9,...,a,,b1,ba,...,b, are nonnegative real numbers
and A1, Xo,. .., A, are nonnegative real numbers such that Ay +Xo+---+ A\, =
1, then

(8)

—
=)
%_
-
=
||’:]:
S
+_
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Proof of Lemma 2.1. According to the weighted AM-GM inequality, we have

n Ak n

ag
|| < E A .
P <Gk+bk> = k(ak-i-bk)

k

Similarly, we get

1) 5 (20
< A .
g(ak‘i‘bk ; g ay, + by
Summing up these two inequalities, it holds
n 1 n n n
Tt [Tt T <o
k=1 k=1

k=1 (ak + bk) k1
which leads to the desired result (8). O

Remark 2.1. A particular case by = by = - =b, = 1,LA\{ = Ay = --- =
An =1 in (8) yields

171N

(1+a)(I+az) - (1+ay) > [1+ (arag---ap)™|
which is a famous inequality, called the Chrystal inequality (refer to |7, pp.
61]), so Lemma 2.1 can be regarded as a generalization of the Chrystal
inequality.

Proof 3. Use the induction on n € N*. When n = 1, the result is obviously
obtained. Assume that (5) is true for n = m, that is

a T‘ T' a1 +ao+---+a r
LBy Im s _(_11 2 m)
bs bs bs mr—s (b1+b2+...+bm)

When n = m + 1, we need to prove the following inequality:

m+1 .

Z o Z m+1
bs

k=1 +1

(a1+a2+---+am)r N ap, i1
= mr—s—1 (bl +by+ - _|_bm)5 bfn-ﬁ-l

(by induction assumption)

[(R (a) + bm+1)71“(5m(b) +bm+1)$ (m + 1)“ﬁ‘1y
( )T 5— 1( <)+bm+1) r
(@) (5m) 5 + (5 001

- (m + )”S Yby+ - 4 b + bipg1)®
(by a special case n = 3 in (8))

B (a1 4+ am + ams1)"
(m + 1)T—s—1(b1 4+ bm + bm+1)s’
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where R,,(a) mr,(fifr(’l;;i’?fﬁ;m)s and S,,(b) = by + by + -+ + by,. Thus,

the inequality (5) holds for n = m + 1, so the proof of the induction step is
completed. O

In the next theorem, we will prove the equivalence relations between the
weighted power mean inequality and the Radon inequality, which is partly
motivated by a slight observation of the inequality (7).

Theorem 2.2. The Radon inequality (2) is equivalent to the weighted power
mean inequality (4).

Proof. = By the Radon inequality (2) and y1,y2,...,yn € [0, +00), we have

s - < P1y1 : P2y2 : Py s
p1yf+pzy5+---+pnyﬁ:( Lz +( Lz +-~+%
Pi D3 Dn
> (p1y1 +p2y2 + - - + DnYn)*

(pr4+p2+-4pa)s !

which means that

pr+p2+---+pn pr+p2+---+pn

Let yp = a7 for all z,, > 0 (k =1,2,...,n) in (9). Thus, we can obtain the
following weighted power mean inequality (4)

©) Py + p2ys + -+ payn - (p1y1 +p2y2+~-+pnyn>s

1 1

(plm’{ + paxh —i—-'-—l-pan)T - <p1:v‘{ + poxs +---+pnxfl> E
prtp2t--+pn B prtp2t-+pn

< Let pp = by, 2 = 3% and r =m+1(m > 0),s = 1 in (4). Then, we have

1

bi+by+---+by \ b b b T bitbot - +by
which implies that the Radon inequality (2) is achieved. O

Theorem 2.3. The following inequalities are mutually equivalent:

(i) The Bernoulli inequality;

(ii) The weighted AM-GM inequality;
(iii) The Hélder inequality;

(iv) The weighted power mean inequality;
(v) The Minkovski inequality;

) The Radon inequality.

Proof. The equivalence between (iv) and (vi) is given in Theorem 2.2, the
equivalence among (i), (iii) and (vi), one can find in [11] as well as (ii), (iii)
and (iv) in [15], the equivalence between (iii) and (v) is shown in [16]. O
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Corollary 2.1. Ifaqy,as,...,an,b1,bo, ..., b, are positive real numbers, then
for m < —1, the following inequality holds
m—+1 m—+1 m-+1 . m+1
(10) alm +a2m P _(a1+a2—i— -l-an)m
by by bm (b +by+ -+ by)
Proof. Since m < —1, thus by the inequality (2), we have
CLT+1 a;ﬂ+1 agb—i-l b;m b;m b’;m
b + by +e T al_m_l + a;m_l + -t P
(b1 +bo+ - +by) "
T (artaztoodan)TH
Therefore, the inequality (10) holds. O
Corollary 2.2. Ifay,as,...,an,b1,bo,..., b, are positive real numbers, then

for nonpositive real numbers r, s such that r > s+ 1, we have

al  ab al (a1 +ag+ - +ay)
11 2L 2y )
(11) R T [ IR

Proof. For r < 0 and s < 0, the inequalities —s > —r+1,—1r > 0,—s > 0
hold. By the inequality (5), we obtain

at ab ar b ?
S 2= 2
bl b2 bn CLl CL2 (079

(b1 +ba+---+by)°
n=s= (=1 (a1 +ag + -+ +an) "
. (a1 +ag+--+ap)
n=S (b + by + -+ by)°
So, the inequality (11) holds. O

by b

Corollary 2.3. Ifay,a9,...,ay,c1,Ca,...,cy are positive real numbers, and
m is real numbers such that m >0 or m < —1, then

(a1 +ag + -+ +ap)™t!

a a a
(12) — 4+ =24t .
C1 Cc2 Cn 1 1 1
aic{” + azcy’ + -+ ancy’

1
Proof. Consider by, = agc;® for all 1 < k < n in the inequality (2) and (10).
Thus, we obtain the inequality (12). d

Corollary 2.4. Ifa,b € R,a<bm >0 orm < —1,f,¢g: [a,b] = (0,+00)
are integrable functions on |a,b] for all x € [a,b], then
b m+1
b m+1 [, fx)dx
) [ doy Ue/@42)
a (fa g(x) dx)

(g(x)™
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Proof. Let n € Ny, 2, = a+ k:b_Ta,k €{0,1,...,n} and & € [zk_1,z1]. By
using the inequalities (2) and (10), it follows

$- U™ (£ (5’“)>m:
— (9(&)™ (i (ék))

k=1

It holds that

(f ()" ) [0 (f(2), A )] ™
T N\ An’ — m )
(G a) > T e
where o (f(x), Ap, &) is the corresponding Riemann sum of f(z), of A, =

(xo,x1,...,2y) division and the intermediate & points. By passing to limit
in inequality above, when n tends to infinity, the inequality(13) follows. O

Corollary 2.5. Ifa,be R,a <b,rs >0,r > s+ 1, f,g: [a,b] = (0,400)
are integrable functions on |a,b] for any x € [a,b], then

/b gay . (Hi@ds)
o @D - gy ([ g(ayda)

Proof. Since the conclusion can be obtained via using the same method of
Corollary 2.4, we omit the details here. (|

Proposition 2.1. If a,b,c are the lengths of the sides of a triangle and
28 =a+b+c, then

a” b c 2\ "2
14 > (= gn-t > 1.
(14) b+c+c+a+a—|—b_<3) =

Proof. When n = 1, the result (14) equals to the Nesbitt inequality (see [9, p.
16, Example 1.4.8] or [12, p. 2, Exercise 1.3]). For n > 2, we obtain
c” a+b+c)"
+ + > ——1 ( )
b+c c+a a+bd 3n (b+c+c+a+a+d)

2 e n—1
- (3) o

by using the inequality (5). O

a” b

Proposition 2.2. Let ai,as9,...,a, be positive real numbers such that a; +
as+---+ay,=sandp>=q+1=1. Then

n

S ks i
S (s—a)t = (n— DT

Proof. By the inequality (5), the inequality above is easily obtained. U
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Proposition 2.3. Let x,y, and z be positive numbers with xyz = 1. Then

3 y? 53 3
+ + > -
I+y)(1+4+2) (A+4+2)0+z) (QA4+2)(1+y)
Proof. By using the generalized Radon inequality (5), we obtain
23 . Y3 . 3
1+y)(1+2) (A+2)(1+2) (1+2)(1+y)
S (z4+y+2)>°
T3+ y)(I+2)+(1+2)(I+a)+(1+a)(l+y)
(z4+y+2)>°

T 9+6(x+y+2)+3(y+yz+ 2w)

(by a general inequality 3(zy +yz + 22) < (z +y + 2)?)
< (z4+y+2)>°
T9+6(x+y+2)+(z+y+2)?

Since x+y+2z > 33xyz = 3, it is not hard to prove that (z4y+2)°

946(z+y+2)+(z+y+2)?2

> % By the way, another proof can be found in |9, pp. 139-140]. O
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